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Abstract
Within a modified Poisson–Boltzmann theory we study the effect of Bjerrum pairs on the
typical length scale 1/κ̄ over which electric fields are screened in electrolyte solutions, taking
into account a simple association–dissociation equilibrium between free ions and Bjerrum pairs.
At low densities of Bjerrum pairs, this length scale is well approximated by the Debye length
1/κ ∝ 1/

√
ρs, with ρs the free-ion density. At high densities of Bjerrum pairs, however, we find

1/κ̄ ∝ √
ρs, which is significantly larger than 1/κ due to the enhanced effective permittivity of

the electrolyte, caused by the polarization of Bjerrum pairs. We argue that this mechanism may
explain the recently observed anomalously large colloid-free zones between an oil-dispersed
colloidal crystal and a colloidal monolayer at the oil–water interface.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Phase separation and criticality in electrolyte solutions, fol-
lowing from Debye–Hückel (DH) theory [1], was extensively
studied by Fisher and Levin [2, 3]. The calculated critical den-
sity and temperature differed by only ∼10% from the results
of Monte Carlo simulations by Panagiotopoulos [4], showing
DH theory to be a reliable basis to describe some basic features
of electrolyte solutions. Fisher and Levin extended the original
DH theory by inclusion of Bjerrum pairs, following the ideas
of Bjerrum [5] that plus and minus ions can form neutral pairs.
These Bjerrum pairs or dipoles are considered as a separate
particle component, and reduce, within the restricted primitive
model, the total number of free ions. The results of the ex-
tended DH theory agreed remarkably with simulation results,
especially when couplings between the dipoles and the ions, as
well as hard-core repulsions, were taken into account [2]. Here,
we apply the same ideas of Bjerrum to describe screening ef-
fects in low-dielectric solvents (‘oils’) by means of a modified
Poisson–Boltzmann theory. In these solutions we expect strong
correlations between the ions, since the energy gain of bringing
two oppositely charged ions at contact can exceed the thermal
energy considerably.

We will consider systems of free ions and dipolar particles,
similar to the study of, for example, [6], and find that electric
fields are screened over a typical length scale 1/κ̄ that can be
significantly larger than the Debye length 1/κ (based on the

ionic strength), at least for large dipole densities. We predict
that these densities are to be expected in low-dielectric solvents
by considering a simple association–dissociation equilibrium
between the free and bound ions [7]. Recently, strong
electrostatic repulsions were observed by Leunissen et al
[10] in low-dielectric solvents (4 � ε � 10), sometimes
extending over a length scale beyond 100 μm. The Debye
length 1/κ−1 was found to be only ∼4 μm, calculated from
conductivity measurements (the density of free ions). The
analysis presented in this paper provides a possible explanation
and a reason for the quantitative differences between these
experiments [10] and the theory in [11], where Bjerrum pairs
were not taken into account.

In section 2 a reaction equilibrium between free and paired
ions will be discussed. The parameter space will be divided
into regions where bound ions outnumber free ions, and vice
versa, by a similar analysis as presented in [3, 7]. In section 3
the effect of the dipole density on the screening length will
be analyzed. First we extend Gouy–Chapman theory [12] by
including dipoles and calculate the effective screening length
1/κ̄ , similar to the calculations in [6]. Remarkably, we find
1/κ̄ ∝ √

ρs at high dipole densities, in contrast to 1/κ ∝
1/

√
ρs, where ρs is the density of free ions. Finally we review

and extend the theory presented in [11] and predict a larger
effective screening length due to dipoles. The considered
densities of free ions are well below the critical value, i.e. phase
equilibrium is not considered, even though the temperatures of
interest are close to the critical temperature.
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2. Bjerrum pairs

First we consider a three-dimensional bulk electrolyte of
monovalent cations and anions, at a total density of 2ρtot. The
ions may form pairs or remain free; the number density of
dipolar Bjerrum pairs is ρd and the number densities of free
ions are ρ+ = ρ− = ρs. In terms of dimensionless densities
ηx = ρxσ

3, where σ is the common diameter of the ions, the
total density ηtot of ions (of one type) is

ηtot = ηd + ηs. (1)

The strength of the electrostatic interactions in the solvent is
reflected by the Bjerrum length, which is the length at which
the bare Coulomb interaction between two monovalent ions is
exactly kBT :

λB = e2

4πεkBT
, (2)

where e is the elementary charge and ε is the dielectric constant
of the medium. For water at room temperature, this length is
only 0.71 nm, for apolar solvents it measures up to several tens
of nanometers and in vacuum it is ∼57 nm. The Coulomb
interaction between two ions can hence be written in terms of
the Bjerrum length:

VC(r)

kBT
= ±λB

r
≡ ±1

l
, (3)

where the +,− refer to equal and oppositely charged particles,
respectively, r is the distance between the particles and l
is a dimensionless distance. The dimensionless equilibrium
constant K of the reaction of free ions that bind into paired
ions is defined by

K = ηd

η+η−
= ηd

η2
s

= 	3

σ 3
exp

(
− 
G

kBT

)
, (4)

where 	 is the ionic de Broglie wavelength and where 
G is
the free energy of a bound pair of ions (being separated by a
distance σ < r < λB), with an associated Coulombic binding
energy VC = −kBT/ l. It will be convenient to introduce the
dimensionless temperature T ∗ = σ/λB, such that K can be
expressed in terms of an internal partition function:

K = 4π

(
1

T ∗

)3 ∫ 1

T ∗
dl l2 exp

(
1

l

)
, (5)

as already postulated by Bjerrum [5]. It can easily be checked
that T ∗ � 1 for typical ions such as Na+ and Cl− in water at
room temperature and T ∗ � 0.2 in oils with ε � 15. Figure 1
shows the relation between the equilibrium constant K and the
dimensionless temperature T ∗. With increasing temperature
K decreases, thereby lowering the tendency to form pairs
according to (4). Using (1) this can be further quantified by
relating ηs to ηtot as

ηtot = ηs + Kη2
s , (6)

which yields ηs and ηd as a function of ηtot and K (T ∗) as

ηs

ηtot
= 1

2Kηtot
(
√

1 + 4Kηtot − 1) = 1 − ηd

ηtot
. (7)

Figure 1. The inverse equilibrium constant K −1 as a function of the
dimensionless temperature T ∗ = σ/λB. The line also marks the
points where the density of paired ions equals the density of free
cations/anions for given concentration of free ions (see right vertical
axis), for an ionic diameter σ = 0.5 nm.

From (4) it can be easily seen that, if K −1 = ηs, then
ηs = ηd. If the left vertical axis of figure 1 is read as
the dimensionless density ηs of free ions, the curve K (T ∗)
thus separates the parameter regime where dipoles dominate
(ηd/ηs > 1) from the regime where free ions dominate
(ηd/ηs < 1). The right vertical axis converts the corresponding
ηs = K −1(T ∗) to the molar density ρs for the typical choice
σ = 0.5 nm. We have already seen that T ∗ � 1 for typical ions
such as Na+ and Cl− in water at room temperature, and that
T ∗ � 0.2 in oils with ε � 15. Figure 1 therefore illustrates, for
instance, that an electrolyte with a millimolar ionic strength,
ρs � 1 mM, is dominated by free ions for T ∗ � 0.15 and
by dipoles for T ∗ � 0.15. For nanomolar concentrations,
ρs = 1 nM, the crossover is at T ∗ � 0.05. For later reference
we also consider the mean separation σ̄ between the ions in a
pair. Assigning a statistical weight ∝ exp(λB/r) to a pair at
separation r , one finds

σ̄ 2 = σ 2 〈l2〉
T ∗2

= σ 2 4π

K

(
1

T ∗

)5 ∫ 1

T ∗
dl l4 exp

(
1

l

)
, (8)

which can straightforwardly be evaluated numerically. The
result is shown in figure 2, as a function of T ∗, for several upper
bounds of the integration domain to check the dependence
of σ̄ and K on the definition of a Bjerrum pair, being two
oppositely charged particles separated by a distance � λB. At
low temperatures T ∗ � 0.05 the values do not depend on the
precise definition, because the deep potential well of >20kBT
at contact dominates the probability distribution.

3. Effective screening length

We now consider a system of monovalent ions near a charged
plate at z = 0, where the z axis is perpendicular to the plate
and the ion density is ρs at z → ∞. We expect that the charge
of the plate is screened by an oppositely charged ionic cloud of

2
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Figure 2. The mean ion separation of the Bjerrum pairs σ̄ (in units
of the ionic diameter σ ) as a function of the dimensionless
temperature T ∗ = σ/λB for several definitions of the maximum ion
separation that is still called a Bjerrum pair. At low temperatures
T ∗ � 0.05 the separation does not depend on the precise definition,
because the deep potential well of >20 kBT at contact dominates the
partition sum of the pair.

net charge, generated by the ions. By the Poisson–Boltzmann
equation, solved by Gouy and Chapman [12], the typical width
of this cloud (the double layer) can be found. This length scale
is also known as the Debye length 1/κ = 1/

√
8πλBρs. We

now extend Gouy–Chapman theory [12] by the inclusion of an
additional particle species of dipoles with number density ρd

in the bulk far from the plate. Following the derivation of [6],
we find the Poisson–Boltzmann equation for z > 0:

φ′′(z) = κ2 sinh φ(z) − κ2 ρd

2ρs
σ̄

d

dz
[G(σ̄φ′(z))], (9)

where a prime denotes a derivative with respect to z and
kBTφ(z)/e is the electrostatic potential. The function G(u) =
cosh(u)/u − sinh(u)/u2 can be accurately approximated by
a first-order expansion G(u) = 1

3 u + O(u2), since the mean
separation σ̄ = O(1) nm and the electric field φ′(z) =
O(1) μm−1 for the systems of interest. The PB equation then
reduces to

φ′′(z) = κ̄2 sinh φ(z), (10)

where

κ̄2 = κ2

ακ2 + 1
, (11)

with α ≡ ρdσ̄
2/6ρs. The presence of dipoles thus increases the

screening length significantly as soon as ακ2 = O(1), which
can only be obtained at high ionic strength in low-dielectric
media, such that ρd/ρs is large. Equivalently, one can also
consider the dielectric constant to be effectively changed by the
presence of the dipoles. Writing κ̄ = 8πe2ρs/(ε̄kBT ), with ε̄

the effective dielectric constant gives with (11) that

ε̄ = ε + 4πσ̄ 2λvac
B ρd

3
, (12)

where λvac
B is the Bjerrum length in vacuum. The molar density

of pairs has to be large enough for a significant change in the
effective dielectric constant. For typical ion diameters of a few
ångström one needs ρd � 10 mM for ε̄ � 2ε.

In (9)–(12) we treated ρs and ρd as independent densities,
whereas in (4) we related them directly through an equilibrium
reaction. Using (4) we find α = Kηsσ̄

2/6 such that the limit
ακ2  1 gives

κ̄−1 = √
α ∝ √

ρs, (13)

which is a remarkable dependence, since in the absence of
dipoles the Debye length scales as κ−1 ∝ 1/

√
ρs. The full

dependence of κ̄−1 on κ−1 follows from (11) and (4) as

κ̄−1 = κ−1
√

(Aκ)4 + 1 ≈
⎧⎨
⎩

A2

κ−1
, κ−1 � A;

κ−1, κ−1  A,

(14)

with A4 = K T ∗σ 2σ̄ 2/(48π). Relation (14) is plotted,
in a conveniently scaled fashion, in figure 3(a), revealing a
minimum at κ−1 = 2

1
4 A that separates the dilute limit (where

κ � κ̄) from the dense limit (where κ̄−1 ∼ A2κ). In figure 3(b)
the ratio κ̄−1/κ−1, which equals

√
(Aκ)4 + 1 from (14), is

plotted as a function of T ∗ for ρd = 0.1, 1 and 10 M, setting
σ̄ = σ = 0.5 nm. Figure 3 reveals a strong modification
of the effective screening length (by factors of 2–10) provided
ρd � 1 M and T ∗ � 0.1 (or ε � 10). The key question is
therefore if such conditions are experimentally attainable; the
answer will be provided in section 4.

4. Physically relevant regime

From (14) and figure 3 we conclude that the effective screening
length is significantly larger than the Debye length, if the
density of dipoles is of the order of 1 M. We do not expect that
these densities can be reached in polar solvents (water), where
T ∗ is high, and hence K is low, such that free ions dominate
according to (7) and figure 1. The equilibrium constant K can
be very high in low-polar solvents (oil), such that there are
many more Bjerrum pairs than free ions. However, salt also
dissolves worse in oil than in water, and the question is whether
or not enough ionic strength is possible to produce the Bjerrum
pairs at all. In order to get an estimation of the parameter
regime where inflation of the screening length could take place,
we calculate the minimal free-ion density ρmin

s σ 3 = ηmin
s at

which κ/κ̄ > 1 to a significant degree. From (4) it can be
found that ακ2 � 1 implies

ηmin
s =

√
3T ∗

4π K
, (15)

where the dimensionless ηs, T ∗ and K were defined in
section 3. This condition provides a lower bound for the ion
concentrations in oil where a significant effect from pairs can
be expected. We consider the oil to be in contact with a water
reservoir, and assume the ions to partition between the two
phases due to a difference in Born self-energy [15–17, 20].
Given the maximum ionic strength in water of about 10 M,
we find an estimate for the maximum ionic strength ρmax

s in the

oil: ρmax
s [M] = 10 × exp(

λwater
B
σ

− 1
T ∗ ), where the Born energy

kBT/T ∗ in oil is used, with σ the effective ionic diameter in
oil. A significant increase of κ̄−1 due to Bjerrum pairs thus
requires the existence of a regime where ρmin

s < ρs < ρmax
s .

3
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Figure 3. (a) The (dimensionless) effective screening length as a function of the Debye length κ−1 = (8πλBρs)
− 1

2 on the basis of (14)
showing the asymptotic regimes κ̄−1 = κ−1 and κ̄−1 = κ A2, separated by a minimum at κ−1 = 2

1
4 A (see text). (b) The effective screening

length (in units of the Debye length) as a function of dimensionless temperature T ∗ on the basis of (14) for several dipole densities ρd = 0.1, 1
and 10 M, at a mean separation and particle diameter σ̄ = σ = 0.5 nm. The upper axis shows the conversion from T ∗ to ε at σ = 0.5 nm.
The effective screening length can be up to a factor of O(10) higher than the Debye length κ−1, at high dipole densities.

From a numerical analysis, however, we find that ρmax
s < ρmin

s
for all T ∗ using reasonable values for σ . In other words, the
required high density of dipoles cannot be reached according
to the equilibrium constant K defined in (5).

In order to make some further progress, we treat solvation
effects in a slightly less naive fashion. So far we considered
the ions to have an effective radius a± of a few ångström,
connected to a Born self-energy of several tens of kBT in oil
and less than 1 kBT in water. The bare radius of ∼1 Å for
small ions such as Na+ or Cl− would overestimate the self-
energies and underestimate the solvation of the ions in low-
polar solvents, as found for example in experiments [10]. The
actual effective radius is thus larger due to hydration shells
of water molecules that form a cage around the ion [18]. By
assuming now that two ions can approach each other up to the
bare diameter ξσ of the ions, where 0 < ξ < 1, instead of σ ,
the effective diameter of the ions, the equilibrium constant K is
found to be much higher. This is visualized by the breaking and
forming of the structure of water molecules around the ions.
Within this speculative picture the equilibrium constant of (5)
is redefined by

Kξ = 4π

(
1

ξT ∗

)3 ∫ 1

ξT ∗
dl l2 exp

(
1

l

)
, (16)

where an explicit energetic and entropic cost of restructuring
the layer of surrounding water molecules is ignored. A small
ξ can lead to much higher densities of dipoles, by orders
of magnitude, compared to ξ = 1. Intuitively one could
expect higher-order clusters to form at such densities. We
expect, however, that higher-order clusters are increasingly
unfavorable. The energy gain by electrostatic arguments has to
compensate for both the loss of entropy and the energy needed
to restructure the surrounding water molecules [19].

In figure 4(a) we plot K −1
ξ as a function of T ∗ for several

ξ ; for ξ = 1 the curve is identical to the curve of figure 1.

As in figure 1, the present curves also separate the high-
T ∗ regime dominated by free ions from a low-T ∗ regime
dominated by dipoles. Reducing the contact distance from σ to
ξσ is immediately seen to reduce the free-ion regime: dipoles
form already at higher T ∗. The right vertical axis denotes,
again in analogy with figure 1, the free-ion concentration at
the crossover ρs = ρd (using σ = 0.5 nm to convert to molar
concentrations). Figure 4(a) thus reveals a lowering of the free-
ion concentration at which dipole formation sets in by orders
of magnitude when ξ is reduced from 1 to 0.2. Figure 4(b)
shows the (dimensionless and molar) maximum and minimum
free-ion concentrations ρmax

s and ρmin
s (ξ), respectively, as a

function of T ∗ and several ξ . Consistent with our earlier
observations we see that ρmin

s > ρmax
s for ξ � 0.6 in the T ∗

regime of interest. Interestingly, for ξ � 0.6 a physically
attainable regime of ρmin

s < ρs < ρmax
s opens up in which

significant dipolar effects are to be expected to increase the
effective screening length beyond the bare one. For the choice
of σ = 0.5 nm used in figure 4(b), this implies that Bjerrum
pairs play an important role provided the bare ion diameter
ξσ � 0.3 nm. This seems physically reasonable.

5. Possible observations

We will now consider the system of [10], consisting of
micrometer-sized, strongly hydrophobic PMMA particles,
dispersed in an oily mixture of cyclohexylbromide and cis-
decalin in contact with water, containing monovalent ions. A
densely packed monolayer of colloidal particles was observed
at the oil–water interface and a dilute bulk crystal separated
by a large colloid-free zone of ∼100 μm between the bulk
crystal and the interface. The system was theoretically
described in [11] with a model that will be extended here
by the introduction of Bjerrum pairs. We consider strongly
hydrophobic colloidal particles in oil near a planar oil–water
interface, in the presence of monovalent ions. We focus

4
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Figure 4. (a) The equilibrium constant K −1
ξ related to the dimensionless temperature T ∗ = σ/λB for several values of ξ . When one focuses

on the left vertical axis, the lines also mark the points where the density of paired ions equals the density of free cations/anions for a given
concentration of free ions (see right vertical axis for the molar density, given an ionic diameter of σ = 0.5 nm). For decreasing ξ the
parameter regime where the dipoles dominate increases. (b) The ion densities at which ακ2 = 1, i.e. where the effective screening length
κ̄−1 = √

2κ−1 for several values of ξ . For small ξ , i.e. a small bare radius compared to the effective radius, the screening length is increased
by the presence of the dipoles, already at low salt concentrations. The red dashed line denotes the ion density at which the salt concentration
in water is 10 M, i.e. higher salt concentrations are not physical in oil (in contact with water).

on the distribution of particles in the direction perpendicular
to the interface. By employing the framework of density
functional theory we write the grand potential as a functional
�[ρ, ρ+, ρ−, ρd] of the variational density profiles of the
colloidal particles ρ(r), the cations ρ+(r), the anions ρ−(r)
and the dipoles ρd(r, s), with s the vector of the dipole
orientation. The functional is also given in [11] except for the
dipole contributions (with a subscript d), and is

� =
∑
α=±

∫
dr ρα(r)(kBT (ln ρα(r)	3 − 1) + Vα(r))

+
∫

dr ρ(r)
(

kBT

(
ln

η(r)
η0

− 1

)
+ V (r)

)

+
∫

dr ds ρd(r, s)(kBT (ln ρd(r, s)	3 − 1)

+ V+(r) + V−(r) + 
G(r))

−
∑
α=±

μα

∫
dr

(
ρα(r) +

∫
ds ρd(r, s)

)

+ kBT
∫

dr (ρ(r)�(η̄(r)) + 1
2 Q(r)φ(r)), (17)

where η(r) = 4πa3ρ(r)/3 is the colloidal packing fraction,
and where the first and second lines are the ideal gas grand-
potential functionals of the ions and the colloidal particles in
their external fields, respectively, the third and fourth lines are
the ideal gas free energy of the dipoles and the binding free
energy, the fifth line a grand canonical contribution (for fixed
chemical potentials) and the last line describes the hard-core
and Coulomb interactions [11]. The electrostatic interactions
between ion–ion, ion–dipole and dipole–dipole are taken into
account on a mean-field level, similarly to [6]. For reasons of
simplicity we do not include the correlation effects presented
in [2, 3, 8, 9]. The chemical potential of the colloidal particles
is represented in terms of a reference colloid packing fraction
η0, to be discussed below. The total local charge number

density Q(r) = Zρ(r)+ρ+(r)−ρ−(r)+∫
ds [ρd(r+s σ̄

2 , s)−
ρd(r − s σ̄

2 , s)], with s the unit vector denoting the direction of
the dipole and σ̄ the mean distance between the centers of the
ions of a pair (previously found to be σ̄ � σ in low-dielectric
media, see (8) and figure 2). For small σ̄ the last term in the
expression for Q(r) reduces to

∫
ds σ̄∇ρd(r, s) · s. (18)

We obtain the equilibrium distribution of colloidal particles
by minimization of the functional (17) with respect to η(r),
which reduces to η(z) due to the symmetry of the system.
Minimizations with respect to the densities ρ±(z) yield the
Boltzmann distributions for the free ions, also given in [11]
(only we use the slightly different notation ρ(∞) ≡ ρs here)
and dipole density ρd(r, s):

ρd(z) = ρd
sinh(σ̄ |φ′(z)|)

σ̄ |φ′(z)| , (19)

where the expression is integrated over s and where we
used the relations between K , ρd and ρs given in earlier
sections. Combining these with the Poisson equation yields
a Poisson–Boltzmann equation (9) from which we can find the
electrostatic potential φ(z), for the boundary conditions

lim
z↑0

εwφ′(z) = lim
z↓0

εoφ
′(z); lim

z→±∞ φ′(z) = 0,

where εw is the relative permittivity of water and εo that of oil.
The five equations of the five unknowns (the particle densities
and the electrostatic potential) are solved numerically.

Figure 5 shows the resulting packing fraction profile η(z),
as well as the electrostatic potential φ(z) in the inset, for
ξ = 1 and 0.37. The parameters are the colloidal radius
a = 1 μm, the colloidal charge Z = 450, the relative

5
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Figure 5. The packing fraction profile η(z) of strongly hydrophobic,
oil-dispersed colloidal spheres (radius a = 1 μm, charge Z = 450)
in the vicinity of a planar interface at z = 0 between water (z < 0,
dielectric constant εw = 80) and oil (z > 0, εo = 5.2) for a colloidal
bulk packing fraction ηb = η(∞) = 5 × 10−5 of weakly wetting
colloidal particles (cos θ = 0.987◦) and screening length in oil
κ−1/a = 8. The curves show the influence of Bjerrum pairs on the
depletion zone. For ξ = 1 the effect of Bjerrum pairs can be ignored
(κ̄−1/a = κ−1/a = 8). For ξ = 0.37 Bjerrum pairs cannot be
ignored and the screening length effectively increases up to
κ̄−1/a = 20, due to an effective increase of the permittivity, resulting
in a long range repulsion between the monolayer and the bulk crystal
over 100 μm.

permittivity of water εw = 80 and that of oil εo = 5.2, and
also the external potentials V (z) and V±(z) are identical to
those in [11], i.e. V (z) is a Pieranski potential [21] with contact
angle cos θ = 0.987◦ and an oil–water interfacial tension of
γow = 9 mN m−1, and V±(z) is based on Born self-energy
differences in oil and water with ionic radii a± = 0.3 nm
(i.e. σ = 0.6 nm).

The curve η(z) for ξ = 1 is virtually identical to the one
published in [11] (i.e. the effect of the Bjerrum pairs can be
ignored completely) and reveals a strong monolayer adsorption
at z � a, a colloid-free zone for 1 � z/a � 30, and a colloidal
crystal [14] with a packing fraction η(∞) = ηb = 5 × 10−5

at z � 30. Experimentally, however, a colloid-free zone
that extends to z � 100 μm was observed [10] for these
parameters. Comparing this with the curve for ξ = 0.37 in
figure 5 yields a much better agreement with the experimental
observation. We speculate, therefore, that Bjerrum pairing is
an interesting feature for further study in these oily solvents.

6. Conclusion

In this paper we considered the effect of Bjerrum pairs on
the screening length and concluded that it can be significantly
larger in low-polar media than the Debye length that is
calculated from the free-ion concentration (for example,
obtained by conductivity measurements) and the bare solvent
dielectric constant. Due to the coupling of free ions and

dipoles through an association–dissociation equilibrium, we
predict the effective screening length to scale as κ̄−1 ∝√

ρs at relatively high salt concentrations, in contrast to the
scaling κ−1 ∝ 1/

√
ρs for the Debye length, where ρs is

the free-ion concentration. A large concentration of Bjerrum
pairs was found to change the dielectric constant of the
medium effectively. By a naive treatment of solvation effects
of the ions, the required dipole concentrations seem to be
unattainable for physical parameters, such that the effect of
Bjerrum pairs could be neglected completely. After making
the distinction between an effective ionic diameter, due to
hydration shells that lower the self-energy, and a bare ionic
diameter, determining the closest distance between two ions,
a regime of physical parameters was found where inflation of
the screening length could be expected. Our results provide
a possible explanation for the extremely large colloid-free
zone that was observed in recent experiments [10]. Clearly,
however, more research is needed to investigate this effect.
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